Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Cardiol ; : 131965, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492863

RESUMO

Acute coronary syndrome (ACS), a significant cardiovascular disease threat, has garnered increased focus concerning its etiological mechanisms. Thin-cap fibroatheroma (TCFA) are central to ACS pathogenesis, characterized by lipid-rich plaques, profuse foam cells, cholesterol crystals, and fragile fibrous caps predisposed to rupture. While TCFAs may be latent and asymptomatic, their pivotal role in ACS risk is undeniable. High-resolution imaging techniques like Optical coherence tomography (OCT) and Intravascular ultrasound (IVUS) are instrumental for effective TCFA detection. Therapeutic strategies encompass pharmacological and interventional measures, including antiplatelet agents, statins, and Percutaneous Coronary Intervention (PCI), aiding in plaque stabilization, inflammation reduction, and rupture risk mitigation. Despite the strong correlation between TCFAs and adverse prognoses in ACS patients, early detection and rigorous treatment significantly enhance patient prognosis and diminish cardiovascular events. This review aims to encapsulate recent advancements in TCFA research within ACS, covering formation mechanisms, clinical manifestations, and prognostic implications.

2.
Cardiovasc Diagn Ther ; 14(1): 5-17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434558

RESUMO

Background: The relationship between neointimal characteristics of in-stent restenosis (ISR) and periprocedural myocardial injury (PMI) remains unclear. Therefore, this study aimed to investigate the relationship between PMI and neointimal characteristics of ISR by using optical coherence tomography (OCT). Methods: This was a retrospective study. We enrolled 140 patients diagnosed with ISR with normal baseline high-sensitivity troponin T (hs-cTnT) levels who underwent OCT and subsequent revascularization by means of drug-coated balloon (DCB) or drug-eluting stent (DES) between October 2018 and October 2022 in the Affiliated Hospital of Zunyi Medical University. Based on the 4th universal definition of myocardial infarction, patients whose hs-cTnT were increased five times above the upper reference limit (URL) after percutaneous coronary interventions (PCI) were deemed to PMI. The patients were subdivided into PMI (n=53) and non-PMI (n=87) groups. In the univariable analysis, variables in the baselines, angiography characteristics and OCT findings were analyzed with binary logistic regression. A P value of <0.2 was included in the multivariable model. Multivariable logistic regression analysis was used to identify the independent predictors of PMI. Results: The prevalence of intra-intimal microvessels in patients with PMI was higher than in those without PMI (58.5% vs. 32.2%, P=0.003). The ratio of intra-stent plaque rupture (PR) was also higher in patients with PMI (60.4% vs. 40.2%, P=0.021). Multivariable logistic regression analysis showed that intra-intimal microvessels [odds ratio (OR): 3.193, 95% confidence interval (CI): 1.280-7.966; P=0.013] and intra-stent PR (OR: 2.124, 95% CI: 1.153-4.732; P=0.035) were independently associated with PMI. Conclusions: Intra-intimal microvessels and intra-stent PR were independently associated with PMI. Accurate identification and recognition of intra-intimal microvessels and intra-stent PR may be helpful in preventing PMI.

3.
Int Heart J ; 65(1): 4-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296578

RESUMO

Neoatherosclerosis is a major cause of stent failure after percutaneous coronary intervention. Metabolism such as hyperuricemia is associated with in-stent restenosis (ISR). However, the association between serum uric acid (sUA) levels and in-stent neoatherosclerosis (ISNA) has never been validated.A total of 216 patients with 220 ISR lesions who had undergone optical coherence tomography (OCT) of culprit stents were included in this study. According to their sUA levels, eligible patients were divided into two groups [normal-sUA group: sUA < 7 mg/dL, n = 126, and high-sUA group: sUA ≥ 7 mg/dL, n = 90]. OCT findings were analyzed and compared between the normal- and high-sUA groups.The incidence of ISNA (63.0% versus 43.0%, P = 0.004) was significantly higher in the high-sUA group than in the normal-sUA group. Lipid plaques (66.3% versus 43.0%, P < 0.001) and thin-cap fibroatheroma (38.0% versus 18.0%, P = 0.001) were observed more frequently in the restenotic tissue structure in patients in the high-sUA group than in those in the normal-sUA group. Meanwhile, univariate (OR: 1.208, 95% CI: 1.037-1.407; P = 0.015) and multivariate (OR: 1.254, 95% CI: 1.048-1.501; P = 0.013) logistic regression analyses indicated that sUA levels were an independent risk factor for ISNA after adjusting for relevant risk factors.The high-sUA levels were an independent risk factor for the occurrence of neoatherosclerosis in patients with ISR via OCT.


Assuntos
Aterosclerose , Reestenose Coronária , Intervenção Coronária Percutânea , Placa Aterosclerótica , Humanos , Ácido Úrico , Reestenose Coronária/etiologia , Reestenose Coronária/complicações , Placa Aterosclerótica/complicações , Stents/efeitos adversos , Aterosclerose/etiologia , Tomografia de Coerência Óptica/métodos , Intervenção Coronária Percutânea/efeitos adversos , Constrição Patológica/patologia , Vasos Coronários/patologia
4.
Int J Cardiol ; 396: 131417, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802300

RESUMO

BACKGROUND: Monocyte-to-high-density lipoprotein cholesterol ratio (MHR) is an independent predictor of atherosclerosis and in-stent restenosis (ISR). However, the association between MHR and the incidence of in-stent neoatherosclerosis (ISNA) remains to be validated. METHODS: This study included 216 patients with acute coronary syndrome who had 220 ISR lesions and had undergone optical coherence tomography (OCT). All eligible patients were divided into three groups according to their MHR tertile level. OCT characteristics were comparatively analyzed between groups of different MHR levels, and univariate and multivariate logistic regression analyses were constructed to assess correlations between MHR level and ISNA as well as in-stent thin-cap fibroatheroma (TCFA). A receiver operating characteristic curve was used to determine the optimal MHR thresholds for predicting ISNA and in-stent TCFA. RESULTS: The incidence of ISNA (70.3% vs. 61.1% vs. 20.3%, P < 0.001) and in-stent TCFA (40.5% vs. 31.9% vs. 6.8%, P < 0.001) was the highest in the third tertile, followed by the second and first tertiles, respectively. Multivariate analysis revealed that MHR was independently associated with ISNA (odds ratio [OR], 7.212; 95% confidence interval [CI], 1.287-40.416; P = 0.025) and in-stent TCFA (OR, 5.610; 95% CI, 1.743-18.051; P = 0.004) after adjusting for other clinical factors. The area under the curve was 0.745 (95% CI, 0.678-0.811; P < 0.001) for the prediction of ISNA and 0.718 (95% CI, 0.637-0.778; P < 0.001) for the prediction of in-stent TCFA. CONCLUSION: MHR levels are an independent risk factor for ISNA.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Tomografia de Coerência Óptica/métodos , Monócitos/patologia , Aterosclerose/patologia , Stents/efeitos adversos , Lipoproteínas HDL , Colesterol , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/complicações , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Valor Preditivo dos Testes , Angiografia Coronária/efeitos adversos
5.
Signal Transduct Target Ther ; 8(1): 431, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981648

RESUMO

Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Hipóxia/genética , Oxigênio , Epigênese Genética
6.
Int J Cardiovasc Imaging ; 39(12): 2609-2619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804387

RESUMO

Neoatherosclerosis (NA) is a significant contributor to late stent failure; however, predictors of late in-stent restenosis (ISR) with NA have not been systematically reported. This study aimed to identify predictors of NA incidence and plaque vulnerability in patients with late ISR and the role of low-density lipoprotein cholesterol (LDL-C) levels in this process. A total of 216 patients with 216 lesions who underwent optical coherence tomography (OCT) before interventional procedure for late drug-eluting stent ISR were enrolled and divided into NA and non-NA groups based on OCT findings. Results showed that higher LDL-C levels were associated with NA, thin-cap fibroatheroma (TCFA), intimal disruption, plaque erosion, and thrombosis. Multivariate regression analysis revealed that the LDL-C level was an independent risk factor for NA and TCFA. The LDL-C levels exhibited a significant predictive value for NA and TCFA, surpassing other factors such as stent age and other lipid types. In conclusion, a high LDL-C level is an independent predictor of NA incidence and plaque vulnerability in patients with late ISR.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Reestenose Coronária , Stents Farmacológicos , Doenças das Valvas Cardíacas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Stents Farmacológicos/efeitos adversos , LDL-Colesterol , Tomografia de Coerência Óptica/métodos , Neointima , Valor Preditivo dos Testes , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Reestenose Coronária/patologia , Aterosclerose/patologia , Constrição Patológica/complicações , Doenças das Valvas Cardíacas/complicações , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações
7.
Shock ; 60(4): 573-584, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832154

RESUMO

ABSTRACT: Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure. In this study, we observed that expression levels of ANXA2 were dynamically altered in mouse hearts upon MI and peaked on the second day post-MI. Using adeno-associated virus vector-mediated overexpression or silencing of ANXA2 in the heart, we also found that elevation of ANXA2 in the infarcted myocardium significantly improved cardiac function, reduced cardiac fibrosis, and promoted peri-infarct angiogenesis, compared with controls. By contrast, reduction of cardiac ANXA2 exhibited opposite effects. Furthermore, using in vitro coculture system, we found that ANXA2-engineered macrophages promoted cardiac microvascular endothelial cell (CMEC) proliferation, migration, and neovascularization. Mechanistically, we identified that ANXA2 interacted with yes-associated protein (YAP) in macrophages and skewed them toward pro-angiogenic phenotype by inhibiting YAP activity. In addition, ANXA2 directly interacted with integrin ß3 in CMECs and enhanced their growth, migration, and tubule formation. Our results indicate that increased expression of ANXA2 could confer protection against MI-induced injury by promoting neovascularization in the infarcted area, partly through the inhibition of YAP in macrophages and activation of integrin ß3 in endothelial cells. Our study provides new therapeutic strategies for the treatment of MI injury.


Assuntos
Anexina A2 , Traumatismos Cardíacos , Infarto do Miocárdio , Animais , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Células Endoteliais/metabolismo , Traumatismos Cardíacos/metabolismo , Integrina beta3 , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
9.
Theranostics ; 13(7): 2192-2209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153746

RESUMO

M2 macrophage-mediated tissue repair plays an important role in acute myocardial infarction (AMI). Additionally, VSIG4, which is mainly expressed on tissue-resident and M2 macrophages, is crucial for the regulation of immune homeostasis; however, its effects on AMI remain unknown. In this study, we aimed to investigate the functional significance of VSIG4 in AMI using VSIG4 knockout and adoptive bone marrow transfer chimeric models. We also determined the function of cardiac fibroblasts (CFs) through gain- or loss-of-function experiments. We showed that VSIG4 promotes scar formation and orchestrates the myocardial inflammatory response after AMI, while also promoting TGF-ß1 and IL-10. Moreover, we revealed that hypoxia promotes VSIG4 expression in cultured bone marrow M2 macrophages, ultimately leading to the conversion of CFs to myofibroblasts. Our results reveal a crucial role for VSIG4 in the process of AMI in mice and provide a potential immunomodulatory therapeutic avenue for fibrosis repair after AMI.


Assuntos
Infarto do Miocárdio , Animais , Camundongos , Fibrose , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/patologia
10.
Front Cardiovasc Med ; 9: 913039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386358

RESUMO

N6-methylatidine (m6A) is involved in post-transcriptional metabolism and a variety of pathological processes. However, little is known about the role of m6A in vascular proliferative diseases, particularly in vascular smooth muscle cells (VSMCs) phenotype switching-induced neointimal hyperplasia. In the current study, we discovered that methyltransferase like 3 (METTL3) is a critical candidate for catalyzing a global increase in m6A in response to carotid artery injury and various VSMCs phenotype switching. The inhibited neointimal hyperplasia was obtained after in vivo gene transfer to knock-down Mettl3. In vitro overexpression of Mettl3 resulted in increased VSMC proliferation, migration, and reduced contractile gene expression with a global elevation of m6A modification. In contrast, Mettl3 knockdown reversed this facilitated phenotypic switch in VSMCs, as demonstrated by downregulated m6A, decreased proliferation, migration, and increased expression of contractile genes. Mechanistically, Mettl3 knock-down was found to promote higher phosphatidylinositol 3-kinase (Pi3k) mRNA decay thus inactivating the PI3K/AKT signal to inhibit VSMCs phenotype switching. Overall, our findings highlight the importance of METTL3-mediated m6A in VSMCs phenotype switching and offer a novel perspective on targeting METTL3 as a therapeutic option for VSMCs phenotype switching modulated pathogenesis, including atherosclerosis and restenosis.

11.
In Vitro Cell Dev Biol Anim ; 58(8): 669-678, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36006589

RESUMO

We aimed to explore the effects of myeloid-derived growth factor (Mydgf) on the regulation of hypoxia/reoxygenation (HR)-induced apoptosis of cardiac microvascular endothelial cells (CMECs). CMECs were exposed to hypoxia for 24 h and reoxygenation for 6 h to establish an HR cell model. Subsequently, an adenovirus was used to overexpress Mydgf in CMECs. Flow cytometry and TUNEL staining were used to detect the extent of apoptosis, whereas qPCR was used to detect the relative expression of Mydgf mRNA. Western blotting was also performed to detect the expression of apoptosis-related proteins and endoplasmic reticulum stress (ERS)-related proteins, including C/EBP Homologous Protein (CHOP), glucose-regulated protein 78 (GRP 78), and cleaved Caspase-12. The endoplasmic reticulum stress agonist tunicamycin (TM) was used to stimulate CMECs for 24 h as a rescue experiment for Mydgf. Flow cytometry revealed that the HR model effectively induced endothelial cell apoptosis, whereas qPCR and western blotting showed that Mydgf mRNA and protein levels decreased significantly after HR treatment (P < 0.05). Overexpression of Mydgf in cells effectively reduced apoptosis after HR. Furthermore, western blotting showed that HR induced a significant upregulation of CHOP, GRP78, and cleaved-Caspase-12 expression in CMECs, whereas HR-treated cells downregulated the expression of CHOP, GRP78, and cleaved-Caspase-12 after Mydgf overexpression. Under HR conditions, TM significantly reversed the protective effect of Mydgf on CMECs. Mydgf may reduce CMEC apoptosis induced by HR by regulating oxidative stress in ERS.


Assuntos
Células Endoteliais , Animais , Apoptose/genética , Caspase 12/genética , Caspase 12/metabolismo , Hipóxia Celular/genética , Estresse do Retículo Endoplasmático , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Mensageiro/metabolismo , Tunicamicina
12.
Mol Ther Nucleic Acids ; 28: 573-586, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35592503

RESUMO

Myocardial infarction is one of the leading diseases causing death and disability worldwide, and the revascularization of damaged tissues is essential for myocardial-injury repair. Circular RNAs (circRNAs) are widely involved in physiological and pathological processes in various systems throughout the body, and the role of circRNAs in cardiovascular disease is gaining attention. In this study, we determined that circERBB2IP is highly expressed in the hearts of newborn mice. Silencing or overexpression of circERBB2IP inhibited and promoted angiogenesis in vivo and in vitro, respectively. Mechanistically, the transcription factor GATA4 promotes the production of circERBB2IP. Furthermore, circERBB2IP functioned as an endogenous miR-145a-5p sponge and was able to sequester and repress miR-145a-5p activity, which led to an increased expression level of Smad5. In summary, circERBB2IP can promote angiogenesis after myocardial infarction through the miR-145a-5p/Smad5 axis. These data suggest that circERBB2IP may be a potential therapeutic target for the treatment of myocardial infarction.

13.
Curr Gene Ther ; 22(4): 331-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240953

RESUMO

BACKGROUND: Exosomes released from cardiomyocytes (CMs) potentially play an important role in angiogenesis through microRNA (miR) delivery. Studies have reported an important role for miR-29a in regulating angiogenesis and pathological myocardial hypertrophy. However, whether CMderived exosomal miR-29a is involved in regulating cardiac microvascular endothelial cell (CMEC) homeostasis during myocardial hypertrophy has not been determined. METHODS: Angiotensin II (Ang II) was used to induce CM hypertrophy, and ultracentrifugation was then used to extract exosomes from a CM-conditioned medium. CMECs were cocultured with a conditioned medium in the presence or absence of exosomes derived from CMs (Nor-exos) or exosomes derived from angiotensin II-induced CMs (Ang II-exos). Moreover, a rescue experiment was performed using CMs or CMECs infected with miR-29a mimics or inhibitors. Tube formation assays, Transwell assays, and 5-ethynyl-20-deoxyuridine (EdU) assays were then performed to determine the changes in CMECs treated with exosomes. The miR-29a expression was measured by qRT-PCR, and Western blotting and flow cytometry assays were performed to evaluate the proliferation of CMECs. RESULTS: The results showed that Ang II-induced exosomal miR-29a inhibited the angiogenic ability, migratory function, and proliferation of CMECs. Subsequently, the downstream target gene of miR- 29a, namely, vascular endothelial growth factor (VEGFA), was detected by qRT-PCR and Western blotting, and the results verified that miR-29a targeted the inhibition of the VEGFA expression to subsequently inhibit the angiogenic ability of CMECs. CONCLUSION: Our results suggest that exosomes derived from Ang II-induced CMs are involved in regulating CMCE proliferation, migration, and angiogenesis by targeting VEGFA through the transfer of miR-29a to CMECs.


Assuntos
Exossomos , MicroRNAs , Miócitos Cardíacos , Fator A de Crescimento do Endotélio Vascular , Angiotensina II/farmacologia , Proliferação de Células/genética , Meios de Cultivo Condicionados , Exossomos/genética , Exossomos/metabolismo , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Patológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Ann Transl Med ; 9(14): 1162, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430603

RESUMO

BACKGROUND: The in-hospital mortality of patients with ST-segment elevation myocardial infarction (STEMI) increases to more than 50% following a cardiogenic shock (CS) event. This study highlights the need to consider the risk of delayed calculation in developing in-hospital CS risk models. This report compared the performances of multiple machine learning models and established a late-CS risk nomogram for STEMI patients. METHODS: This study used logistic regression (LR) models, least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and tree-based ensemble machine learning models [light gradient boosting machine (LightGBM) and extreme gradient boosting (XGBoost)] to predict CS risk in STEMI patients. The models were developed based on 1,598 and 684 STEMI patients in the training and test datasets, respectively. The models were compared based on accuracy, the area under the curve (AUC), recall, precision, and Gini score, and the optimal model was used to develop a late CS risk nomogram. Discrimination, calibration, and the clinical usefulness of the predictive model were assessed using C-index, calibration plotd, and decision curve analyses. RESULTS: A total of 2282 STEMI patients recruited between January 1, 2016 and May 31, 2020, were included in the complete dataset. The linear models built using LASSO and LR showed the highest overall predictive power, with an average accuracy over 0.93 and an AUC above 0.82. With a C-index of 0.811 [95% confidence interval (CI): 0.769-0.853], the LASSO nomogram showed good differentiation and proper calibration. In internal validation tests, a high C-index value of 0.821 was achieved. Decision curve analysis (DCA) and clinical impact curve (CIC) examination showed that compared with the previous score-based models, the LASSO model showed superior clinical relevance. CONCLUSIONS: In this study, five machine learning methods were developed for in-hospital CS prediction. The LASSO model showed the best predictive performance. This nomogram could provide an accurate prognostic prediction for CS risk in patients with STEMI.

15.
Comput Math Methods Med ; 2021: 7252280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285708

RESUMO

Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI patients with hyperuricemia. We compared five machine learning models (logistic regression, k-nearest neighbor, CatBoost, random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62.5 ± 13.6 years; 83.6%, male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year follow-up.


Assuntos
Hiperuricemia/complicações , Aprendizado de Máquina , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Idoso , Algoritmos , Área Sob a Curva , China/epidemiologia , Biologia Computacional , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea , Prognóstico , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia
16.
Theranostics ; 11(13): 6315-6333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995660

RESUMO

Objective: This study aimed to explore the role of circular RNAs (circRNAs) in M2 macrophage (M2M)-derived small extracellular vesicles (SEVs) in myocardial fibrosis development. Methods: The regulatory role of M2M-derived extracellular vesicles (EVs) was evaluated in a mouse model of acute myocardial infarction. Immunofluorescence, quantitative real-time PCR (RT-qPCR), nanoparticle tracking analysis, Western blot analysis and electron microscopy were used to identify macrophages, large extracellular vesicles (LEVs) and SEVs. The circRNA expression profiles of M0 macrophages (M0Ms) and M2Ms were determined by microarray analysis. Bioinformatic analysis, cell coculture and cell proliferation assays were performed to investigate the expression, function, and regulatory mechanisms of circUbe3a in vitro. qPCR, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, RNA fluorescence in situ hybridization (RNA-FISH), Western blot analysis and a series of rescue experiments were used to verify the correlation among circUbe3a, miR-138-5p and RhoC. Results: CircUbe3a from M2M-derived SEVs triggered functional changes in cardiac fibroblasts (CFs). CircUbe3a was synthesized and loaded into SEVs during increased M2M infiltration after myocardial infarction. The fusion of the released SEVs with the plasma membrane likely caused the release of circUbe3a into the cytosol of CFs. Silencing or overexpressing circUbe3a altered CF proliferation, migration, and phenotypic transformation in vitro. We confirmed that circUbe3a plays a crucial role in enhancing functional changes in CFs by sponging miR-138-5p and then translationally repressing RhoC in vitro. In vivo, the addition of M2M-derived SEVs or overexpression of circUbe3a significantly exacerbated myocardial fibrosis after acute myocardial infarction, and these effects were partially abolished by circUbe3a-specific shRNA. Conclusions: Our findings suggest that M2M-derived circUbe3a-containing SEVs promote the proliferation, migration, and phenotypic transformation of CFs by directly targeting the miR-138-5p/RhoC axis, which may also exacerbate myocardial fibrosis after acute myocardial infarction.


Assuntos
Vesículas Extracelulares/química , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , RNA Circular/genética , Animais , Divisão Celular , Movimento Celular , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Remodelação Ventricular , Proteína de Ligação a GTP rhoC/fisiologia
17.
Cell Death Discov ; 7(1): 64, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824287

RESUMO

Autophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.

18.
In Vitro Cell Dev Biol Anim ; 57(1): 30-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33420578

RESUMO

To investigate the mechanism by which hypoxia-reoxygenation (HR) mediates macrophage polarization to the M1 phenotype and then mediates cardiomyocyte (CM) pyroptosis through exosome release. Mouse bone marrow macrophages and CMs were cultured in vitro under hypoxia for 12 h and reoxygenation for 6 h to establish an HR cell model. qPCR was used to detect the M1 or M2 macrophage markers IL-1ß, TNF-α, MR, and Arg, and a macrophage and CM coculture system was then established. Macrophages were transfected with an exosome-CD63-red fluorescent protein (RFP) lentivirus, allowing secretion of exosomes expressing RFP, and GW4869 was used to inhibit exosome release by macrophages. qPCR detected miR-29 expression in macrophage-derived exosomes, and macrophages were transfected with miR-29a inhibitors to obtain exosomes with low miR-29a expression (siR-exos). Pyroptosis indicators were detected by Western blot and ELISA. Importantly, LPS induced bone marrow macrophage polarization to the M1 type as a positive control to further verify that these exosomes (LPS-exos) regulated CM pyroptosis by delivering miR29a. Dual luciferase reporter and Western blot assays were adopted to analyze the miR-29a and MCL-1 target relationship. In addition, MCL-1 overexpression was used as a rescue experiment to determine whether miR-29a regulates pyroptosis in CM by targeting MCL-1. Macrophages expressed the M1 macrophage markers IL-1ß and TNF-α after HR exposure. After CM coculture, RFP expression was significantly higher in the HR group than in the normal (Nor) group but significantly reduced in the GW4869 group. Immunofluorescence showed that caspase-1 mRNA and protein expression in the HR group was significantly higher than that in the Nor group (P < 0.05). Caspase-1 expression was significantly decreased in the GW4869 group compared with the HR group (P < 0.05). Western blotting showed that the pyrolysis-related NLRP3 and ASC protein expression levels were significantly upregulated in the HR group compared with the control (Ctr) and Nor groups (P < 0.05). However, GW4869 effectively inhibited pyroptosis-related protein expression (P < 0.05). In addition, ELISA showed that the expression of the inflammation indicators IL-1ß and IL-18 was significantly increased in the HR group compared to the Ctr group (P < 0.05) but decreased in the GW4869 group (P < 0.05). qPCR showed that miR-29a was upregulated in the HR group compared to the Nor group. Moreover, HR-induced exosomes (HR-exos) from macrophages exacerbated HR-induced CM pyroptosis, while inhibition of miR-29a in exosomes partially offset CM pyroptosis induction. LPS-exos promoted pyroptosis-related protein expression, as the IL-1ß and IL-18 concentrations were increased in the LPS-exos group. However, pyroptosis-related proteins were observably decreased, and IL-1ß and IL-18 were also significantly decreased after miR-29a inhibition when compared with that in the HR-exos and LPS-exos groups. Mcl-1 overexpression reversed miR-29a-mediated CM pyroptosis in an HR environment. HR treatment induced macrophage polarization towards the M1 phenotype, which mediated CM pyroptosis through exosomal miR-29a transfer by targeting MCL-1.


Assuntos
Polaridade Celular , Exossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/farmacologia , Piroptose , Animais , Sequência de Bases , Hipóxia Celular/genética , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Piroptose/efeitos dos fármacos , Piroptose/genética
19.
PeerJ ; 8: e9796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904464

RESUMO

BACKGROUND: The occurrence of pathological cardiac fibrosis is attributed to tissue hypoxia. Circular RNAs play significant regulatory roles in multiple cardiovascular diseases and are involved in the regulation of physiological and pathophysiological processes. CircHIPK3 has been identified as the one of the most crucial regulators in cardiac fibrosis. However, the mechanisms by which circHIPK3 regulates cardiac fibrosis under hypoxia remain unclear. Our study aimed to determine circHIPK3 expression in cardiac fibroblasts (CFs) and investigate the functions of circHIPK3 in hypoxia environment. METHODS: The expression level of circHIPK3 in CFs under hypoxia (1% O2) was analyzed by qRT-PCR. The role of circHIPK3 on the proliferation and migration of CFs were determined by EdU, cell wound scratch assay and cell cycle. The expression of proteins associated with phenotypic transformation in CFs in vitro was examined by immunofluorescence assay and western blot. Bioinformatics analysis, dual luciferase activity assay and RNA fluorescent in situ hybridization assay revealed that miR-152-3p was identified as a target of circHIPK3 and that TGF-ß2 was targeted by miR-152-3p. RESULTS: CircHIPK3 expression was significantly upregulated in CFs in a hypoxic environment. In vitro, overexpressing circHIPK3 obviously promoted CF proliferation, migration and phenotypic changes under hypoxia, but those processes were suppressed by circHIPK3 silencing. CircHIPK3 acted as an endogenous miR-152-3p sponge and miR-152-3p aggravated circHIPK3 silencing induced inhibition of CF proliferation, migration, phenotypic transformation and TGF-ß2 expression in vitro. In summary, circHIPK3 plays a pivotal role in the development of cardiac fibrosis by targeting the miR-152-3p/TGF-ß2 axis. CONCLUSIONS: These findings demonstrated that circHIPK3 acted as a miR-152-3p sponge to regulate CF proliferation, migration and phenotypic transformation through TGF-ß2, revealing that modulation of circHIPK3 expression may represent a potential target to promote the transition of hypoxia-induced CFs to myofibroblasts.

20.
Oxid Med Cell Longev ; 2020: 8418407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733638

RESUMO

Exosomes play critical roles in mediating cell-to-cell communication by delivering noncoding RNAs (including miRNAs, lncRNAs, and circRNAs). Our previous study found that cardiomyocytes (CMs) subjected to hypoxia released circHIPK3-rich exosomes to regulate oxidative stress damage in cardiac endothelial cells. However, the role of exosomes in regulating angiogenesis after myocardial infarction (MI) remains unknown. The aim of this study was to establish the effects of exosomes derived from hypoxia-induced CMs on the migration and angiogenic tube formation of cardiac endothelial cells. Here, we reported that hypoxic exosomes (HPC-exos) can effectively reduce the infarct area and promote angiogenesis in the border surrounding the infarcted area. HPC-exos can also promote cardiac endothelial cell migration, proliferation, and tube formation in vitro. However, these effects were weakened after silencing circHIPK3 in hypoxia-induced CMs. We further verified that silencing and overexpressing circHIPK3 changed cardiac endothelial cell proliferation, migration, and tube formation in vitro by regulating the miR-29a expression. In addition, exosomal circHIPK3 derived from hypoxia-induced CMs first led to increased VEGFA expression by inhibiting miR-29a activity and then promoted accelerated cell cycle progression and proliferation in cardiac endothelial cells. Overexpression of miR-29a mimicked the effect of silencing circHIPK3 on cardiac endothelial cell activity in vitro. Thus, our study provides a novel mechanism by which exosomal circRNAs are involved in the communication between CMs and cardiac endothelial cells.


Assuntos
Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Circular/genética , Animais , Hipóxia Celular/fisiologia , Vasos Coronários/metabolismo , Exossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...